**Authors:**

(1) Dorian W. P. Amaral, Department of Physics and Astronomy, Rice University and These authors contributed approximately equally to this work;

(2) Mudit Jain, Department of Physics and Astronomy, Rice University, Theoretical Particle Physics and Cosmology, King’s College London and These authors contributed approximately equally to this work;

(3) Mustafa A. Amin, Department of Physics and Astronomy, Rice University;

(4) Christopher Tunnell, Department of Physics and Astronomy, Rice University.

## Table of Links

2 Calculating the Stochastic Wave Vector Dark Matter Signal

3 Statistical Analysis and 3.1 Signal Likelihood

4 Application to Accelerometer Studies

4.1 Recasting Generalised Limits onto B − L Dark Matter

6 Conclusions, Acknowledgments, and References

A Equipartition between Longitudinal and Transverse Modes

B Derivation of Marginal Likelihood with Stochastic Field Amplitude

D The Case of the Gradient of a Scalar

## 5 Future Directions

### 5.1 Longer Observation Times

### 5.2 Expanding the Mass Window

This paper is available on arxiv under CC BY 4.0 DEED license.